ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Что такое стандартное состояние химической системы. Термодинамические параметры - что это? Параметры состояния термодинамической системы. Биомедицинская значимость темы

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СТАНДАРТНОЕ СОСТОЯНИЕ в химической термодинамике, состояние системы, выбираемое как состояние отсчета при оценке термодинамическое величин. Необходимость выбора СТАНДАРТНОЕ СОСТОЯНИЕ с. обусловлена тем, что в рамках химический термодинамики не может быть рассчитаны абс. значения энергий Гиббса, химический потенциалов, энтальпий и др. термодинамическое величин для данного вещества; возможен расчет лишь относит. значений этих величин в данном состоянии в сравнении с их значением в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирают из соображений удобства расчетов; оно может меняться при переходе от одной задачи к другой. Значения термодинамическое величин в СТАНДАРТНОЕ СОСТОЯНИЕ с. называют стандартными и обозначают обычно нулем в верх. индексе, например G 0 , H 0 , m 0 -соответственно стандартные энергия Гиббса, энтальпия, химический потенциал вещества. Для химический реакции D G 0 , D H 0 , D S 0 равны изменениям соответственно G 0 , H 0 и S 0 реагирующей системы в процессе перехода от исходных веществ в СТАНДАРТНОЕ СОСТОЯНИЕ с. к продуктам реакции в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. характеризуется стандартными условиями: давлением p 0 , температурой Т 0 , составом (молярная доля x 0). Комиссия ИЮПАК по термодинамике определила (1975) в качестве о сновного СТАНДАРТНОЕ СОСТОЯНИЕ с. для всех газообразных веществ чистое вещество (х 0 = 1) в состоянии идеального газа с давлением р 0 = 1 атм (1,01 10 5 Па) при любой фиксир. температуре. Для твердых и жидких веществ основное СТАНДАРТНОЕ СОСТОЯНИЕс.-это состояние чистого (х 0 = 1) вещества, находящегося под внешний давлением р 0 = 1 атм. В определение СТАНДАРТНОЕ СОСТОЯНИЕ с. ИЮПАК Т 0 не входит, хотя часто говорят о стандартной температуре, равной 298,15 К.

Мн. газы при давлении 1 атм не могут рассматриваться как идеальный газ. СТАНДАРТНОЕ СОСТОЯНИЕ с. в этих случаях не реальное, а некое гипотетич. состояние. Подобный искусств. выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. объясняется простотой расчетов термодинамическое функций для идеального газа.

Для процесса образования химический соединения из простых веществ в термодинамическое справочниках приводятся стандартные энергии Гиббса, энтальпии, энтропии

Для определения этих величин выбирают некоторые простые вещества, для которых, по определению, выполняются условия: = 0, =0, = 0. В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. для про стых веществ принимают устойчивое фазовое и химический состояние элемента при данной температуре. Это состояние не всегда совпадает с естественным; так, СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества фтора при всех температурах-чистый идеальный газ при 1 атм, состоящий из молекул F 2 ; при этом не учитывается диссоциация F 2 на атомы. СТАНДАРТНОЕ СОСТОЯНИЕ с. может быть разным в различные температурных интервалах. Для Na, например, в интервале от 0 до Т пл (370,86 К) СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества-чистый металлич. Na при 1 атм; в интервале от Т пл до T кип (1156,15 К)-чистый жидкий Na при 1 атм; выше 1156,15 К-идеальный газ при 1 атм, состоящий исключительно из атомов Na. Т. обр., стандартная энтальпия образования твердого NaF ниже 370,86 К соответствует изменению энтальпии в реакции Na (тв) + 1 / 2 F 2 = = NaF (тв), а в интервале 370,86-1156,15 К соответствует изменению энтальпии в реакции Na (жидк) + 1 / 2 F 2 = NaF(TB).

СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе вводится для возможности пересчета экспериментально определяемых энтальпий растворения D aq Н 0 (Н 2 О) в энтальпии образования химический соединения. Так, если известна стандартная энтальпия растворения в воде КСl, а D Н 0 обр [К + , раствор] и [Сl - , раствор]-соответственно энтальпии образования ионов К + и Сl в СТАНДАРТНОЕ СОСТОЯНИЕ с. в водном растворе, то стандартная энтальпия образования КСl может быть рассчитана по уравению: [КСl, тв] = = - D aq H 0 (Н 2 0) +[К + , раствор] +[Сl - , раствор].

В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе, согласно рекомендациям ИЮПАК, принимают состояние данного иона в гипотетич. одномоляльном водном растворе, в котором для рассматриваемого иона энтальпия равна его энтальпии в бесконечно разбавленый растворе. Кроме того, принимают, что энтальпия образования иона Н + в СТАНДАРТНОЕ СОСТОЯНИЕс., т.е. [Н + , раствор, Н 2 О] равна нулю. В результате появляется возможность получения относительных стандартных энтальпий образования др. ионов в растворе на основе наиболее надежных (ключевых) значений энтальпий образования химический соединений. В свою очередь, полученные значения энтальпий образования ионов в растворе служат для определения неизвестных энтальпий образования химический соединение в тех случаях, когда стандартные энтальпии растворения измерены.

СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов двух- и многокомпонентных систем вводится как состояние отсчета при расчетах термодинамическое активностей, энергий Гиббса, энтальпий, энтропии смешения (последние три величины в СТАНДАРТНОЕ СОСТОЯНИЕ с. равны нулю). Возможен так называемой симметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., при котором в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонента используется его основное СТАНДАРТНОЕ СОСТОЯНИЕ с., определенное согласно ИЮПАК. Если многокомпонентная система является жидкой, то и в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов берется их жидкое состояние. Альтернативой служит антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., когда для растворителя сохраняется СТАНДАРТНОЕ СОСТОЯНИЕ с., выбранное согласно рекомендациям ИЮПАК, а для растворенного вещества А в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирается его состояние в растворе единичной концентрации, обладающим свойствами бесконечно разбавленый раствора. Выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. в этом случае связан с определенной концентрац. шкалой (молярная доля, молярность, моляльность). Антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. удобен в тех случаях, когда растворенное вещество не существует в данной фазе в чистом виде (например, НCl не существует в виде жидкости при комнатной температуре).

Понятие СТАНДАРТНОЕ СОСТОЯНИЕ с. введено Г. Льюисом в нач. 20 в.

Литература: Льюис Дж., Рендалл М., Химическая термодинамика, пер. с англ., М., 1936; Белоусов В. П., Панов М. Ю., Термодинамика водных растворов неэлектролитов, Л., 1983: Воронин Г.Ф., Основы термодинамики, М., 1987, с. 91, 98, 100. М.В. Коробов.

Химическая энциклопедия. Том 4 >>

Условно принятые состояния индивидуальных веществ и компонентов растворов при оценке термодинамических величин .

Необходимость введения «стандартных состояний» связана с тем, что термодинамические закономерности не описывают достаточно точно поведение реальных веществ, когда количественной характеристикой служит давление или концентрация . Стандартные состояния выбирают из соображений удобства расчётов, и они могут меняться при переходе от одной задачи к другой.

В стандартных состояниях значения термодинамических величин называют «стандартными» и обозначают нулем в верхнем индексе , например: G 0 , H 0 , m 0 - это соответственно стандартные энергия Гиббса , энтальпия , химический потенциал вещества. Вместо давления в термодинамических уравнениях для идеальных газов и растворов используют фугитивность (летучесть), а вместо концентрации - активность.

Стандартные состояния ИЮПАК

Комиссия по термодинамике международного союза теоретической и прикладной химии (ИЮПАК) определила, что стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения. Комиссия предложила следующие стандартные состояния веществ:

  • Для газовой фазы - это (предполагаемое) состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа .
  • Для беспримесной фазы, смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.
  • Для раствора - это (предполагаемое) состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.
  • Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния ИЮПАК не входит стандартная температура, хотя часто говорят о стандартной температуре, которая равна 25 °C (298,15 К).

Чтобы сравнивать между собой тепловые эффекты различных реакций необходимо стандартизировать условия, в которых эти реакции протекают (исходные вещества взяты в стехиометрических отношениях). Состояние каждого вещества создается как стандартное состояние. Это физическое состояние, в котором вещество более устойчиво, при P0=101кПа=1атм. и T=298К=25˚С.

Тепловой эффект реакции протекающий при стандартных условиях.

Термохимические уравнения – это уравнения химических реакций, в которых рядом с формулой участвующих реакций символом в скобках указывается состояние вещества (твердое – (т), кристаллическое – (к), жидкое – (ж), газообразное – (г), раствор – (р)) и после уравнения через точку с запятой указывается, величена теплового эффекта, при стандартных условиях.

В данной реакции из простых веществ и образуется сложное вещество тепловой эффект таких реакций называется теплотой образования вещества.

Стандартная терлота образования вещества () – это тепловой эффект образования 1 моль вещества из простых веществ, находящихся в стандартном состоянии.

Стандартная теплота образования простых веществ условно принимается равной нулю. Стандартные теплоты образования сложных веществ имеются в справочной таблице.

Термохимические законы и расчёты по ним:

1. Закон Гесса.

Тепловой эффект реакции протекающий в несколько стадий равен сумме тепловых эффектов отдельных стадий.

Окисление графита.

Следствие из закона Гесса:

То есть тепловой эффект процесса зависит только от вида исходных веществ и продуктов реакций, но не зависит от пути перехода.

Тепловой эффект реакции равен разности сумм теплот образования продуктов реакции и исходных веществ. Теплоты образования участников реакции рассчитываются в последующем выражении с учетом коэффициента уравнения реакции. Последнее выражение используется для расчета тепловых эффектов химических реакций, протекающих при стандартных условиях, с использованием справочных данных, по стандартным теплотам образования участников реакций.

2. Закон Лавуазье-Лапласа.

Теплота образования вещества численно равна теплоте разложения вещества с противоположным знаком.

Направленность химических реакций.

Всякая химическая реакция обратима, т.е. может протекать как в прямом, так и в обратном направлении. Поэтому в реакционной смеси всегда присутствуют как исходные вещества, так и продукты реакции. Но отношение будет зависеть от условий, в которых находятся реагирующие вещества. Все реакции обратимы, но в определенных условиях они могут протекать в определенном направлении.

Термодинамика позволяет определить направление протекания данной реакции при данных условиях (при t=const и P=const). Самопроизвольно протекают процессы связанные с уменьшением свободной энергии системы. Исходя из этого, самопроизвольно могут протекать реакции в ходе, которых уменьшается свободная энергия системы. При экзотермической реакции теплосодержание уменьшается такие реакции должны идти самопроизвольно (), однако данный критерий не является единственным. Изменение свободной энергии определяется также величиной ещё одной термодинамической функции – энтропией. Можно привести пример реакций, которые являются экзотермическими, но самопроизвольно не протекают.

Следовательно, принцип Бертло-Томсона не распространяется на все реакции. Это объясняется тем, что изменение свободной системы связано не только с изменением ее теплосодержанием, но и с изменением энтропии.

Процессы могут протекать и без изменения внутренней энергии и без изменения теплосодержания .

Энтропия (S, Дж/К) – это термохимическая функция, мера беспорядка системы, функция вероятности состояния системы. Таким образом, самопроизвольно идут процессы, в ходе которых энтропия увеличивается, то есть растет хаотизация. Обратный процесс требует затраты энергии.

Самопроизвольно может протекать расширение газа в пустоту или в вакуум и процессы смешения.

Критерии самопроизвольного

протекания процесса.
Стандартная энтропия вещества ( (В), Дж/моль*К) предназначена для сопоставления и определения энтропии в химической реакции. Можно оценить энтропию для 1 моль любого вещества для стандартных условий. Для энтропии соблюдаются следствия из закона Гесса.

Изменение энтропии при стандартных условиях в ходе химической реакции.

Изменение энтропии не зависит от способа перехода системы из начального состояния в конечное состояние, а определяется лишь исходным и конечным состоянием реагирующих веществ. И если , то реакции идут самопроизвольно при условии, что .

Энтропия вещества зависит от его физического состояния и при переходе из кристаллического в жидкое и газообразное энтропия будет увеличиваться. Энтропия пропорциональна температуре.

Изобарно-изотермический потенциал системы – это величина свободной энергии системы при постоянном давлении и температуре, при стандартных условиях, она обозначается G 0 . В ходе химической реакции имеет место изменение изобарно-термического потенциала.

Состояние равновесия, т. е. прямой и обратный процесс протекает с одинаковыми скоростями и оба направления равновероятны. При она может при данных температуре и давления протекать самопроизвольно, обратная реакция не возможна.

Долгое время среди физиков и представителей других наук был способ описания того, что они наблюдают в процессе своих экспериментов. Отсутствие единого мнения и наличие большого количества терминов, взятых «с потолка», приводило к путанице и недопониманиям среди коллег. Со временем каждый раздел физики приобрел свои устоявшиеся определения и единицы измерения. Так появились термодинамические параметры, объясняющие большинство макроскопических изменений в системе.

Определение

Параметры состояния, или термодинамические параметры, - это ряд физических величин, которые все вместе и каждая в отдельности могут дать характеристику наблюдаемой системе. К ним относятся такие понятия, как:

  • температура и давление;
  • концентрация, магнитная индукция;
  • энтропия;
  • энтальпия;
  • энергии Гиббса и Гельмгольца и многие другие.

Выделяют интенсивные и экстенсивные параметры. Экстенсивными называются те, которые находятся в прямой зависимости от массы термодинамической системы, а интенсивными - которые определяются другими критериями. Не все параметры одинаково независимы, поэтому для того, чтобы вычислить равновесное состояние системы, необходимо определять сразу несколько параметров.

Кроме того, среди физиков существуют некоторые терминологические разногласия. Одна и та же физическая характеристика у разных авторов может называться то процессом, то координатой, то величиной, то параметром, а то и просто свойством. Все зависит от того, в каком контенте ученый ее использует. Но в некоторых случаях существуют стандартизированные рекомендации, которых должны придерживаться составители документов, учебников или приказов.

Классификация

Существует несколько классификаций термодинамических параметров. Так, исходя из первого пункта, уже известно, что все величины можно разделить на:

  • экстенсивные (аддитивные) - такие вещества подчиняются закону сложения, то есть их значение зависит от количества ингредиентов;
  • интенсивные - они не зависят от того, сколько вещества было взято для реакции, так как при взаимодействии выравниваются.

Исходя из того, в каких условиях находятся вещества, составляющие систему, величины можно разделить на те, которые описывают фазовые реакции и химические реакции. Кроме того, нужно учитывать вступающих в реакцию. Они могут быть:

  • термомеханические;
  • теплофизические;
  • термохимические.

Помимо этого, любая термодинамическая система выполняет определенную функцию, поэтому параметры могут характеризовать работу или теплоту, получаемую в результате реакции, а также позволяют рассчитать энергию, необходимую для переноса массы частиц.

Переменные состояния

Состояние любой системы, в том числе термодинамической, можно определить по сочетанию ее свойств или характеристик. Все переменные, которые полностью определяются только в конкретный момент времени и не зависят от того, как именно система пришла в это состояние, называются термодинамическими параметрами (переменными) состояния или функциями состояния.

Система считается стационарной, если переменные функции с течением времени не изменяются. Один из вариантов - это термодинамическое равновесие. Любое, даже самое малое изменение в системе, - уже процесс, а в нем может быть от одного до нескольких переменных термодинамических параметров состояния. Последовательность, в которой состояния системы непрерывно переходят друг в друга, называют «путь процесса».

К сожалению, путаница с терминами все еще имеет место, так как одна и та же переменная может быть как независимой, так и результатом сложения нескольких функций системы. Поэтому такие термины, как «функция состояния», «параметр состояния», «переменная состояния» могут рассматриваться в виде синонимов.

Температура

Один из независимых параметров состояния термодинамической системы - это температура. Она представляет собой величину, которая характеризует количество кинетической энергии, приходящееся на единицу частиц в термодинамической системе, находящейся в состоянии равновесия.

Если подходить к определению понятия с точки зрения термодинамики, то температура является величиной обратно пропорциональной изменению энтропии после добавления в систему теплоты (энергии). Когда система равновесна, то значение температуры одинаково для всех ее «участников». В случае если имеется разница температур, то энергия отдается более нагретым телом и поглощается более холодным.

Существуют термодинамические системы, в которых при добавлении энергии беспорядочность (энтропия) не возрастает, а наоборот - уменьшается. Кроме того, если подобная система будет взаимодействовать с телом, температура которого больше, чем ее собственная, то она отдаст свою кинетическую энергию этом телу, а не наоборот (исходя из законов термодинамики).

Давление

Давлением называется величина, характеризующая силу, воздействующую на тело, перпендикулярно его поверхности. Для того чтобы вычислить этот параметр, необходимо все количество силы разделить на площадь объекта. Единицами измерения этой силы будут паскали.

В случае с термодинамическими параметрами газ занимает весь доступный ему объем, и, кроме того, молекулы, его составляющие, непрерывно хаотично двигаются и сталкиваются друг с другом и с сосудом, в котором находятся. Именно эти удары и обуславливают давление вещества на стенки сосуда либо на тело, которое помещено в газ. Сила распространяется во всех направлениях одинаково именно из-за непредсказуемого движения молекул. Чтобы увеличить давление, необходимо повысить температуру системы, и наоборот.

Внутренняя энергия

К основным термодинамическим параметрам, зависящим от массы системы, относят и внутреннюю энергию. Она складывается из кинетической энергии, обусловленной движением молекул вещества, а также из потенциальной энергии, появляющейся, когда молекулы взаимодействуют между собой.

Этот параметр является однозначным. То есть значение внутренней энергии постоянно всякий раз, как система оказывается в нужном состоянии, независимо от того, каким путем оно (состояние) было достигнуто.

Невозможно изменить внутреннюю энергию. Она складывается из теплоты, выделяемой системой и работы, которая ею производится. Для некоторых процессов учитываются и другие параметры, такие как температура, энтропия, давление, потенциал и количество молекул.

Энтропия

Второе начало термодинамики гласит, что энтропия не уменьшается. Другая формулировка постулирует, что энергия никогда не переходит от тела с более низкой температурой к более нагретому. Это, в свою очередь, отрицает возможность создания вечного двигателя, так как нельзя всю энергию, имеющуюся у тела, перевести в работу.

Само понятие «энтропия» было введено в обиход еще в середине 19 века. Тогда оно воспринималось как изменение количества тепла к температуре системы. Но такое определение подходит только к процессам, которые постоянно находятся в состоянии равновесия. Из этого можно вывести следующее заключение: если температура тел, составляющих систему, стремится к нулю, то и энтропия будет равна нулю.

Энтропия как термодинамический параметр состояния газа используется в качестве указания на меру беспорядочности, хаотичности движения частиц. Ее используют, чтобы определить распределение молекул в определенной области и сосуде, либо чтобы посчитать электромагнитную силу взаимодействия между ионами вещества.

Энтальпия

Энтальпия представляет собой энергию, которая может быть преобразована в теплоту (или работу) при постоянном давлении. Это потенциал системы, которая находится в состоянии равновесия, в случае если исследователю известен уровень энтропии, число молекул и давление.

В случае, если указывается термодинамический параметр идеального газа, вместо энтальпии используют формулировку «энергия расширенной системы». Для того чтобы легче было объяснить себе эту величину, можно представить сосуд, наполненный газом, который равномерно сжимается при помощи поршня (например, двигатель внутреннего сгорания). В этом случае энтальпия будет равна не только внутренней энергии вещества, но и работе, которую необходимо произвести, чтобы привести систему в необходимое состояние. Изменение данного параметра зависит только от начального и конечного состояния системы, а путь, которым оно будет получено, роли не играет.

Энергия Гиббса

Термодинамические параметры и процессы, в большинстве своем, связаны с энергетическим потенциалом веществ, составляющих систему. Так, энергия Гиббса является эквивалентом полной химической энергии системы. Она показывает, какие изменения будут происходить в процессе химических реакций и будут ли вещества взаимодействовать вообще.

Изменение количества энергии и температуры системы в процессе протекания реакции затрагивает такие понятия, как энтальпия и энтропия. Разница между этими двумя параметрами как раз и будет называться энергией Гиббса или изобарно-изотермическим потенциалом.

Минимальное значение данной энергии наблюдается в том случае, если система находится в равновесии, а ее давление, температура и количества вещества остаются неизменными.

Энергия Гельмгольца

Энергия Гельмгольца (по другим источникам - просто свободная энергия) представляет собой потенциальное количество энергии, которое будет потеряно системой при взаимодействии с телами, не входящими в нее.

Понятие свободной энергии Гельмгольца часто используется для того, чтобы определить, какую максимальную работу способна выполнить система, то есть сколько высвободится теплоты при переходе веществ из одного состояния в другое.

Если система находится в состоянии термодинамического равновесия (то есть она не совершает никакой работы), то уровень свободной энергии находится на минимуме. А значит, изменение других параметров, таких как температура, давление, количество частиц, также не происходит.

СТАНДАРТНОЕ СОСТОЯНИЕ в термохимии - состояние вещества, в котором оно находится при температуре 298,15 К и давлении 101,325 кПа (760 мм ртутного столба).

  • - Биометрический показатель, отражающий меру изменчивости количественного признака в группе особей: где: М 0- средняя арифметическая по выборке; М i - значение признака каждой особи; n - число особей в выборке...

    Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • - условно выделяемое население, с помощью к-рого производится стандартизация демографических коэффициентов...

    Демографический энциклопедический словарь

  • - то же, что квадратичное отклонение...

    Физическая энциклопедия

  • - показатель степени разброса отдельных индивидуальных наблюдений относительно этого среднего, то есть, мера внутригрупповой изменчивости данного признака...

    Физическая Антропология. Иллюстрированный толковый словарь

  • - в СТАТИСТИКЕ степень отклонения данных наблюдений или множеств от СРЕДНЕГО значения...

    Научно-технический энциклопедический словарь

  • - англ. deviation, standard; нем. Standardabweichung. В статистике - наиболее широко используемое измерение дисперсий оценок...

    Энциклопедия социологии

  • - техническое обслуживание, которое осуществляют в строго регламентированном порядке по стандартным расписаниям и планам...

    Большой бухгалтерский словарь

  • - то лее, что квадратичное отклонение...

    Естествознание. Энциклопедический словарь

  • - О. с., при котором электроды расположены на руках...

    Большой медицинский словарь

  • - О. с., при котором электроды расположены на правой руке и левой...

    Большой медицинский словарь

  • - О. с., при котором электроды расположены на левой руке и левой...

    Большой медицинский словарь

  • - декретное время - таковым является ныне у нас счет времени, установленный по декрету 16 июня 1930 г., на один час вперед против поясного для всей территории СССР. В других государствах, в...

    Морской словарь

  • - вещь, товар, по своим признакам, качествам, свойствам, виду соответствующие типовому образцу...

    Большой экономический словарь

  • - образуется в России из пяти сословных групп в среде городского населения: 1) почетных граждан; 2) гильдейского купечества, местного и иногороднего; 3) мещан или посадских; 4) ремесленников или цеховых и 5) рабочих людей...

    Энциклопедический словарь Брокгауза и Евфрона

  • - тоже, что Квадратичное отклонение...

    Большая Советская энциклопедия

  • - в термохимии - состояние вещества, в котором оно находится при температуре 298,15 К и давлении 101,325 кПа...

    Большой энциклопедический словарь

"СТАНДАРТНОЕ СОСТОЯНИЕ" в книгах

Ойло стандартное

Из книги Исторические байки автора Налбандян Карен Эдуардович

Ойло стандартное 1860-ые. Нефтедобыча в Пенсильвании. Для чего эта самая нефть нужна, человечество ещё толком не знает, посему добыча идёт довольно кустарно. Разливается продукция в любую имеющуюся под рукой тару: пивные бочки, бочкотара из-под рыбы, скипидара и т. д., бочонки

Стандартное отклонение

Из книги Разумное распределение активов. Как построить портфель с максимальной доходностью и минимальным риском автора Бернстайн Уильям

Стандартное отклонение Теперь мы готовы рассчитать риск актива «А». Для этого рассчитывается стандартное отклонение, служащее мерой разброса множества чисел. Расчеты можно произвести вручную, однако это чересчур утомительно. Обычно они производятся с помощью

Стандартное отклонение

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Пример: копирование нескольких файлов на стандартное устройство вывода

Из книги Системное программирование в среде Windows автора Харт Джонсон М

Пример: копирование нескольких файлов на стандартное устройство вывода В программе 2.3 иллюстрируется использование стандартных устройств ввода/вывода, а также демонстрируется, как улучшить контроль ошибок и усовершенствовать взаимодействие с пользователем. Эта

5.26. Дисперсия и стандартное отклонение

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

5.26. Дисперсия и стандартное отклонение Дисперсия - это мера «разброса» значений из набора. (Здесь мы не различаем смещенные и несмещенные оценки.) Стандартное отклонение, которое обычно обозначается буквой?, равно квадратному корню из дисперсии.Data = }